Zw T AL i
Tt /A ~F3

o STL S
éé{—- =37

Interim Scientific Report 4

TECHNIQUES FOR THE REALIZATION
OF ULTRARELIABLE SPACEBORNE COMPUTERS

STANFORD RESEARCH INSTITUTE

MENLO PARK, CALIFORNIA

P LN

V /[T AN
, SR STANFORD RESEARCH INSTITUTE

Menlo Park, California 94025 - U.S.A.
2\ \1/7/4

TRRN L

December 1968

Interim Scientific Report 4

TECHNIQUES FOR THE REALIZATION
OF ULTRARELIABLE SPACEBORNE COMPUTERS

By: J. GOLDBERG H. 8. STONE A. WAKSMAN

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

ELECTRONICS RESEARCH CENTER

575 TECHNOLOGY SQUARE

CAMBRIDGE, MASSACHUSETTS 02139 CONTRACT NAS12-33

S R Project 5580

Approved: D. R. BROWN, DIRECTOR
Information Science Laboratory

TORBEN MEISLING, EXECUTIVE DIRECTOR
Information Science and Engineering

ABSTRACT

This is the fourth scientific report of a study dedicated to the
development of techniques for the realization of ultrareliable, high-
performance, spaceborne computers. The techniques developed are in
support of computer structures in which reliability is achieved through
autonomously controlled logical reconfiguration and fault masking. The
report presents techniques for the accommodation of faults in data
commutation networks based upon crossbar-type switching arrays. Schemes
are developed for accommodating switching failures and for embedding
logic for the control of alternative switching setups within the net-
work, Several schemes are developed that are appropriate for random
and for correlated fault types. The second topic is a consideration of
criteria for the selection of an instruction set for a spaceborne com-
puter. Several merits are found for the use of stack-organized instruc-
tions, together with special registers for specifying the context of a

process. Possible advantages of indirect addressing are also discussed.

iii

FOREWORD

This is an interim report, summarizing’the major results of work
accomplished during the first six months of the third phase of a three-
year program, the goal of which is the development of techniques for the
realization of ultrareliable space computers., This study has been con-
ducted in the Computer Techniques Laboratory of Stanford Reséarch
Institute, under the sponsorship of the Electronics Research Center of

the National Aeronautics and Space Administration.

The goals of the first phase were to survey the state of the art
of design for achieving ultrareliable spaceborne computers, and to form
a basis for research that would advance that art. The final report,
which resulted from the first phase of the program, was concerned with

the following:

e The basic characteristics of an advanced spaceborne
computer
° A description of fault-masking techniques for

general logic functions

L A survey of codes for storage and arithmetic
operations

L] Problems of system organization for dynamic error
control

® Tests for diagnosis of fault conditions

® Some initial descriptions of network designs for

a reconfigurable computer, including commutation
or interconnection networks, programmabie pro-

cessing modules, and programmable control units
s Error-control techniques for memory systems

L] Distributed power supply systems

® The application of magnetic logic

° A survey of the published literature on the attain-
ment of reliable systems through the use of

redundancy.

The goal of the second phase was to develop detailed techniques
for the logical design of an advanced, ultrareliable spaceborne com-
puter. The techniques to be developed were to demonstrate the feasi-
bility of achieving reliability through autonomously controlled logical
reconfiguration and fault masking. An investigation was to be conducted
of techniques for effecting the reconfiguration at various logical

levels in the system.

These techniques have been developed in five steps. The first step
was the development of a system organization that facilitates dynamic
maintenance processes. In the second step, on the basis of the selected
system organization, a detailed logical design was performed of networks
that are uniquely appropriate for a reconfigurableAcomputer. Third,
diagnostic procedures, reliability enhancement techniques, and relia-
bility analysis measures were developed for these networks, where the
requirements exist. A fourth step in the approach involved the investi-
gation of software techniques to aid in the diagnosis, detection, and
recovery from failures. Also concerning software, some techniques were
developed for designing reliable programs. A final step, yet to be
completed, is the development of reliability analysis techniques for

the overall system.

The interim report that resulted from the first six months of

effort on the second phase was concerned with the following:

* The sketch of a multiprocessor system organization,
and a description of operating policies that embodied

self-checking and self-repair

4 The development of logical design techniques for
networks identified with the memory, control, and

microprogram control functions

L4 The development of design principles for commutation
networks, which perform the important function of

data switching in a multiprocessor

® A formal description of program-design techniques
that facilitate the composition of mistake-free

programs .

An important conclusion of the research completed at this stage was
that a byte-sliced structure was particularly attractive for the imple-
mentation at a low system level, because of the high degree of system

reconfigurability provided for a given number of reconfiguration switches,.

The interim report on the work of the second six months of the

second phase was concerned with the following:

® Review of the goals, methods, and assumptions of the
study
® Techniques for the design of a reconfigurable micro-

programmed processing unit

® Techniques for controlling failures within random-
access memory systems, with primary emphasis on the

word-access function

® Further results on commutation networks
® Discussion of software problems of ultrareliability
° Techniques for the diagnosis of iterative digital

networks.

The present report is concerned with two subjects: (1) Fault
accommodation schemes for crossbar data commutation networks, and (2)
Criteria for the selection of an instruction set for a spaceborne com-
puter. During the current period we have also investigated the problem
of the design of executive systems for a self-diagnosing, self-
reconfigurable computer. The approach taken has been to employ the

formalism of finite-state sequential machines for the description of

vii

executive control programs. This work is currently in progress, and the

results are too premature for inclusion in the present report.

viii

CONTENTS

ABSTRACT. . . v v 4 4 v 4 v o s e o v s a e s s s e e e e iii
FOREWORD. . . . v & v ¢ ¢ v v v v o o v o o v v o o o w0 o s v
LIST OF ILLUSTRATIONS « « v v v v v v o v v o o o & xi

I FAULT ACCOMMODATION SCHEMES FOR CROSSBAR DATA

COMMUTATION NETWORKS 1
A. Introduction. . 1
B, Two-Level Fault-Correcting Networks . . 1
1. The Problen. . 1
2, Networks with Equal Numbers of Inputs and
Qutputs. e e 2
3. Networks with Unequal Numbers of Inputs and
Outputs. « . .+ . . . 4
4, Discussion 5
C. General Level-Limited Fault-~Tolerant Networks . . . 5
1. Introduction . . . o e e 5
2. Iterative Constructlon for c(N 2k) . 7
3. An Assignment Algorithm. . . . e v e . 9
4, Iterative Construction for c(N, 2k + 1) e e 11
5. DisScusSSion . . .« . & v 4 4 e 0w e e e e e 13
D, Reconfiguration Control 14
1. The Problem. . . . e e e e e 14
2, An Example of a Hardware Solutlon e e e e e 14
E. Switch Partitioning and Distribution of Contact . . 18
1. The Problem. . . e e e e 18
2. Analysis of a System Sultable for 4
Independent Contact Faults . . . v e e e 19
3. An Approach to the Accommodation of
Nonindependent Array Faults. 21
4, Discussion ¢+ . & « ¢ v e v e e e e e 22
F. Summary and Conclusions + &+ « « & 23
I1 CRITERIA FOR THE SELECTION OF AN INSTRUCTION SET FOR
A SPACEBORNE COMPUTER. . . . + ¢« « & o o o o o o o » o = 25
A, Introduction.,« . . .+ L . . 0 0. .. 25
B. Basic Assumptions and Guidelines. 25
C. Instruction Repertoires« « « . . 27

ix

Utilization of Address Fields. . .

Addressing with Context Registers--Stack
Instruction Sets

Extension of Addressability with Indirection
Address Arithmetic

H. Summary and Conclusions.
Appendix A--FAULT PROTECTION FOR PERMUTATION NETWORKS .
REFERENCES + .« + « « « + &

DD Form 1473

28

30
34
37
42

45

47

ILLUSTRATIONS

Fig.
Fig.
Fig.
Fig.
Fig,
Fig.
Fig.
Fig.

Fig.

Fig.

10

11

‘Simple Two-Level Redundancy Scheme for

n X n Networks.
Economical Two-Level Scheme for n X n Networks.

Economical Two-Level Scheme for n X r Networks.

Iterative Construction Scheme for n X n Networks,

Graph Model of an Assignment Scheme

A Single-Fault-Tolerant Three-Level Clos Network.

Selection Logic for a Nonredundant Crossbar
Selection Logic for a Redundant Crossbar.
Network for Address Modification,

Partitioned Switching System for Correction of
Independent Faults.

Switching System for Whole-Network Bypassing.

xi

11

14

16

17

20

22

I FAULT ACCOMMODATION SCHEMES FOR
*
CROSSBAR DATA COMMUTATION NETWORKS

A, Introduction

Previous reports of this studle have given extensive treatments of
data commutation networks based upon the Z2-permuter module. 1In general,
the networks have been quite economical in numbers of switch and control
circuits., Two disadvantages, compared to the well-known crossbar net-
work scheme, are the high number of levels of logic traversed by a
switched signal, and the complexity of setup logic. In this chapter,
several schemes for accommodating faults in crossbar switches are de-
veloped. A major consideration in this study is tHe number of levels
of logic. Economical logical design techniques for effecting alterna-

tive setups in redundant networks are also illustrated.

B. Two-Level Fault-Correcting Networks
1. The Problem

The subject of this section is the design of crossbar switching
networks in which single faults may be corrected, and which are limited
to having no more than two levels of switching. The basic approach taken
is to provide redundant switches and data paths, together with new modes
of control, so that several alternate paths through the network may be
set, depending upon the location and nature of the fault. .The faults
are assumed to be a single switch permanently closed (stuck) or perma-

nently open.

We will first consider the case of n-input, n-output networks,

and then extend the solution found to n-input, r-output networks.

*
By A. Waksman and J. Goldberg.

TReferences are listed at the end of the report.

2. Networks with Equal Numbers of Inputs and Outputs

A single-level network can be excluded immediately from con-
sideration since it is impossible to incorporate in it the éapability
of correcting both types of fault. This is true since any individual
switch in such a network when becoming stuck at the closed state perma-

nently connects a pair of input-output terminals.

The next step is to consider a two-level network, Here an
upper bound to the size of a two-level network with single-fault-
correcting capabilities can be immediately established by considering
two crossbar switching networks connected in series, as depicted in

2
Fig. 1. For n the number of inputs, the size of such a network is 2n

IN
| bbb
2 2D D Vo N a2y
NN W] A\
3 h-D-O-D-
4 SO0
5 D-O-O-dO ouT
/D D DD I
NN N\ WU\
0 Ve o Vs 2 4. 2
AI ZBAN PR L 2 aa s
N MDD DD 3
N N\ U\
oD N N\ N 4
\J N NN At 4
AN AW 4 2 W 2 L W 4 A Y 5
\f A 4 \F N O\
ABCD
- TA-5580-203

FIG. 1 SIMPLE TWO-LEVEL REDUNDANCY SCHEME
FOR n x n NETWORKS

We correct an open-switch fault between a terminal and a bus
by always assigning a different bus to this terminal for any given

input—-output assignment. We correct a closed-switch fault between a

terminal and a bus by always assigning this bus to the terminal for any

given input-output assignment.

To design a more efficient two-level network, we realize that
none of the crossbar switches can be eliminated as long as the number
of crossbars is equal to the number of terminals. This is true since
by omitting a single'switch, the associated terminal will be inaccessible
under some fault conditions. As an example consider Fig. 1 where on the
input side, switch (1,A) is omitted; then whenever on the 6utput side,
switch (1,A), (2,A), (3,A), or (4,A) becomes faulty at the closed posi-
tion, i.e., permanently closed, input-output assignments including 1 — 1,

12, 1~ 3, or 1~ 4 cannot be completed.
The following approach is proposed:

Consfruct a cascade network of two
rectangular crossbar switches such that
each of them consists of n buses crossed
by (n + k) buses and the (n + k) buses
are common for both switches, For design

variables m and k:

one switch performs n! (n ks k)

1
. — permutations
n m

the other switch performs (n ax) + m permutations

It is not obvious what should be the optimum values of k and m
for such a network to contain a minimum number of-switches, and it is

not obvious how these switches should be distributed.

One possible design for an n-input network, which gives a
total of (n2 + 3n) switches, is given by k = m = 1, Here we assign
n . (n + 1) switches to one level and 2n switches to the other, Figure
2 implies the general scheme by displaying a network of 5 inputs, 5

outputs, and 6 middle-buses,

Any middle-bus associated with a faulty switch in this network

is made redundant; i.e., all other switches associated with it are left

3

. I Ve . W2 W .
- Y ZZNAN 7NN ZERN ZARS PR
2 oD
AN 7 AEAN ¥ SN 7 BN ¥ g ¥
3 DD
AN 7NN RN ¥ AR 7 EaN r e 7
4 a N D
A PN VAR VN e v
b
5 \YZ N 7 AN 7GRN > g N 9—
o l
LY 7 74
B o 2
A\~ aax g 2
ao
\Y 74 (J 3
Ve Nz Y
S~ 4
o
A 5
TA-5580-204

FIG. 2 ECONOMICAL TWO-LEVEL SCHEME FOR
n x n NETWORKS

in the open position. We are left then with an n X n crossbar switch
capable of any of the n! assignments and another crossbar switch capable

of connecting any n of the (n + 1) middle-buses to the n outputs.

3. Networks with Unequal Numbers of Inputs and Outputs

The results for n X n networks may be extended easily to n X r
networks. Thus, the use of a cascade of two identical crossbars requires
2nr contacts. The corresponding design for the eascade of nonidentical

crossbars consists of an (r + k) X n complete crossbar [giving (r ; k)n!

permutations] in cascade with a (r + k) X n crossbar [giving (“ ; k)
permutations], having two contacts per input, for the n inputs. This

case is illustrated in Fig., 3, forn =4, r =7, k = 1,

The cost of the network is (n + k)r + 2n switches, that is, a
cost of kr + 2n over the cost of the unprotected crossbar. For the case
considered, the cost is 43 switches, while the cost of the simple,

duplicate crossbar design is 56 switches.

| b
2 DD
3 -
4 A 4 &
L W W oY I
A} 7N T YN 7 v g
W r(N 2
U7 BN 7 LT 7 SN A~
N DD 3
A B0 A 7~
2 W W P2 oY 4
LY PN VA 7 RN 7 v g
{\ - 5
P o
N DD D 6
AT 7R VAR VAR N v
o b b 7
N 2 A A R
BCDE
TA-5580-205
FIG. 3 ECONOMICAL TWO-LEVEL SCHEME FOR
n x r NETWORKS
4, Discussion

The proposed solution offers substantial savings in contacts
compared to the "obvious' duplicate crossbar solution. It would be of
interest to determine how close this solution is to the minimum. Another
important problem is the extension of the design to the correction of

more than one fault,

C. General Level-Limited Fault-Tolerant Networks

1. Introduction

The following is a design procedure for a single-fault-
tolerant switching network with equal numbers of inputs and outputs,

where the number of levels of the network enters as a design parameter,

By a fault-tolerant network we mean here a network comprised of on-off
contacts capable of assigning its n input terminals to its n output

terminals in n! ways, and also an algorithm exists for making any such

assignment when a single contact is faulty, i.e., stuck-at-closed or

stuck-at~open position.

Definition 1:

The number of levels of a network is the largest number of

contacts a signal has to traverse in any input-output assignment.

Definition 2:

C(N,k) is the number of contacts for a fault-tolerant switching

network of N inputs and k levels,

Definition 3:

c(N,k) is a single-fault-tolerant network of N inputs and k

levels.

Observe that k =2 2, for when k = 1 any network fails to be
fault tolerant. This is true since a stuck-at-closed position contact
causes a permanent link between a pair of input-output terminals. 1In

the preceding section it was found fhat:
C(N,2) < N(N + 3) (1)
It is also known that:
C(N,2 log N) = 4N 1og2 N (see Appendix A). (2)

Therefore for 2 € k < 2 log N we seek an iterative construction for

c(N,k) such that
C(N,k) < C(N,k - 1)

Our iterative construction scheme will be as described in the appendix,
namely: c(N,k) will consist of two peripheral levels constructed from
2 X 2 crossbar switches and a center stage comprised of two c(N/Z,k - 2)

networks. We will use the c(N,2) as the network for the iteration of

even k and we will use c(N,3), which is a modified Clos network, as the

network for the iteration of odd k.

2. Iterative Construction for c(N,2k)

Theorem: Let c(N/2,2(k - 1)) be given; then the network of
Fig. 4 is a c(N,2k) .

Il— —'0|
2x2 2x2
I, c(¥.2tk-n) - 0,
r —

I3 2x2 axz | O3
Ig — — — Og
® ®
® L]
® ®
- N - -
It T oy c(3.2(k-1) oxp [~ ON-
In — On

TA-5580-209

FIG. 4 ITERATIVE CONSTRUCTION SCHEME FOR n x n NETWORKS

Proof:

(a) A single fault in any of the c(N/2,2(k - 1))

is correctable by assumption,

(b) A single fault in any of the peripheral 2 X 2
switches will cause the two associated ter-
minals to be permanently connected to one of
the c(N/2,2(k - lj) switches each. This is
still a valid nonfault-tolerant network, as

described in Appendix A,

7

By iterative construction, we have

C(N,2) = N(N + 3) 5 (3)
and
CN,2K) = 4Nk - 1) + 25 e[2 , 4
2
so that
C(N,2k) = N(Z—(k_l)N + 4k - 1) (5)
k+m
Now for N = 2 , 8o that k = log2 N - m, and C(N,2k) = C(N,2 log N - 2m),
we get
C(N,2K) = N(zm+1 +4 log N - 4m - 1) (6)
m+1
We observe that 2 = 4m only for m = 1, m = 2; so for these values of m
C(N,2 log N - 2m) = N(4 log N - 1) (N

Remarks: The network c(N,2) could always be constructed by
cascading two crossbar switches of N X N each, so that C(N,2) = 2N2 con-
tacts. However, for N = 2, N(N + 3) >‘2N2 in Eq. (3), so that for
N =25 and m = 0, we have C(N,2k) = C(N,2 log N) = N(4 log N + 1). But
since there are in the network N/2 c(2,2) networks which could be re-
placed by two 2 X 2 cascaded switches each, and since for N = 2

2 X 22 = 8 and 2(2 + 3) = 10, there is a saving of 2 contacts in each

J

such replacement; thus we have a total savings of 2 X N/2 = N contacts

so that the new construction gives

C(N,2 log N) = 4N log N (8)

We can conclude that a minimal network is arrived at for:

C(N,2 log N - 2) = C(N,2 log N -~ 4) = N(4 1log N - 1)

3. An Assignment Algorithm

In general, for a switching network the price we pay for an

increase in contact economy is an increase in the complexity of the

assigning algorithm.

Figure 5 represents c(4,2) where the nodes are contact bus-—

wires and a line represents the existence of a contact between the re-

spective two bus-lines.

NN
o TA-5580-206

Consider an assignment algorithm for the network of Fig. 5.

Let the required assignment be:

1’ 3’ "4

where x, y, z, w range over 1, 2, 3, 4, mutually exclusive. Under the

no-fault condition we make the following assignments:

1’ 722 732 74 x?

Notice that M5 was excluded from the assignment since it was redundant,
Now, under a fault condition we exclude M, (i=1, 2, 3, 4, 5), associated
with the faulty contact. Let the contact between M, and O, be faulty;

3 2
then our assignment will be:

I, Ip, I, I, My, My, My, Mg

Ml’ My> M4’ M5 0y y? Tz’ Tw
From the above example we can easily generalize the algorithm to any
c(N,2). Namely, for any assignment, under a fault condition, make the
middle node associated with the fault redundant; The assignment algorithm
for a four~level network will consist of going through a double assign-
ment as explained in Appendix A for the peripheral 2 X 2 switches, which
in turn specifies the assignments on the two c(N/2,2) networks., We can
conclude that for c(N,2k) there will be 2k different subassignments of N

elements each in order to complete the N — N assignment.

10

is single-fault tolerant, i.e., c(N,3).

4.

Iterative Construction for c(N,2k 4+ 1)

Theorem:

L

M

L

Figure 6 is a modified three-level Clos network which

“1nx(n+l) nx{n+l)[.
n
N | (n+) . rxr . : I ’
I
N nx(;-l—l): ' rxr F 1 nx(n+1) :
| : : : : 2
2
n | nx(n+1) D) : rxr : v nx(n+ [,
: : (n+) n+i) : :
— r (n+1) r —
TA-5580-202
FIG. 6 A SINGLE-FAULT-TOLERANT THREE-LEVEL CLOS NETWORK

Proof: Let a fault accrue in one of the L boxes; then we omit

from the assignment consideration the following:'

(a) One of the (n + 1) crossbars associated with

the faulty contact
(b) The 1link associated with the crossbar of (a)
{(c) The M box associated with the 1link in (b)

(d) A1l 1inks associated with the M box of (c).

11

We are then left with a Clos-type network which is nonfault tolerant but

which is still a complete switching network.

From Fig. 6, we have
2
C(N,3) =2rn(n + 1) + r (n + 1)

2 2
2rn 4+ 2rn + rm 4+ T

C(N,3) =
and clearly N = nr, so that
NZ N2
C(N,S) = 2Nn +2N+2—+—2'"
n

To find the value of n for minimal c(N,3), we get

2
d e,z —an - -2 g
dn

and for n >> 2 we get

2

N = 2n s
and

r = 2n R
so that:

2
C(N,3) =8n (1 + n)

or

C(N,3) = 4n((1;—])1/2 + 1)

We proceed to construct c(N,5) in the séme manner that we have

constructed c(N,4) so that

C(N,5) = 4N + zc(g,s)

12

and

C(N,2k + 1) = 4N + 20(2,21; 1),
so that
o L2
C(N,2k + 1) = 4N (-—-) + K
oF

It is possible to arrive at a further saving of contacts for

c(N,3) by observing the following:

(a) In a regular three-level Clos network a single
L. switch can always be eliminated if we can
start with the assignment procedure using the

inputs to this switch first.

(b) 1In a c(N,3) we can reduce one L switch to a
simple switch with 2n contacts which assigns
its n inputs to any n of the (n + 1) outputs,
thus accommodating a single fault in the switch
and allowing for the rest of the assignment

procedure to be followed.

2
Thus, there will be a saving of (n~ =~ 2n) contacts in every c(N,3) making
2 2

1/2
cw,3 = onfemt/? ., %(%-) + 3

5. Discussion

We have considered only the case of eqﬁal numbers of inputs
and outputs. As an example of the savings obtained by going to a third
level, the cost of an (8,3) switch is 79 contacts, while the cost of an
(8,2) switch is 88 contacts. The case of n X r three-level switches has
not been treated as yet, but the relative savings; compared with n X r
two-level switches, may be expected to be at least as great as for the

n X n case.

13

The design of multilevel switches for two or more arbitrary

faults remains an interesting, unsolved problem.

D. Reconfiguration Control

1. The Problem

In some multiprocessor designs, the data switching networks
may be required to change settings at each instruction., ¥For the
redundant-path schemes discussed in Secs. I-B and I-C, it is therefore
necessary to provide for rapid "calculation® of the alternative paths

for particular input-output terminal pairings.

it appears that the amount of logic required for choosing be-
tween alternate paths is small and its structure is uncomplicated. 1In
this part, a hardware scheme is described for the 5 X 6 X 5 network

described in Sec. I-B.

2, An Example of a Hardware Solution

The basic selection logic for a nonredundant crossbar is
illustrated in Fig. 7. The address of the output bus to which the in-
put terminal is to be connected is applied to a decoder, one of whose

outputs sets a flip flop, which controls the appropriate data switch.

| 2 3 4 5
| s By A A A CROSS
D D |/\’ /" " POINTS
FLIP
‘ FLOPS
_> 4 DECODER
ADDRESS TA-5580-~20|

FIG. 7 SELECTION LOGIC FOR A NONREDUNDANT CROSSBAR

14

A suggested scheme for the 5 X 5 redundant-cascade crossbar,
with six intermediate buses, is shown in Fig. 8., Here, the decoder out-
puts feed the flip flops via a ladder network, composed of 2 X 2 permuter
cells. This ladder, which has been employed in earlier reports, provides
for the onerlace, right-shifting of all signals to the right of a speci-
fiéd column. By this means, if a vertical bus is to be disconnected
(B2 in the example), the decoder outputs from 2 to 5 are shifted one

place to the right. Thus, if B, is to be disconnected, and input 1 is

2
to be connected to terminal 2, the address "2" is applied, but the cross-

point for bus B3 is energized,

A similar ladder network is provided at the output network.
The flip flops in the upper network may also be used for controlling the
lower network. Normally, when the flip flop for row 1, column 2 (top
network) is energized, the crosspoint for row 2, column 2 (bottom net-
work) is also energized. If B, is to be bypassed, the B

2 3
put will be directed to the row 2, column 3 (bottom network), by the

flip-flop out-

setting of the bottom network's ladder.

An alternative scheme to using the ladder network in the upper
network is to operate on the input addresses, using special logic, such
that, for the bypassing of bus j, the address a is replaced by a + 1 for

a= j.

Since this function has arisen in several earlier reports, a
logical design has been developed, It is illustrated in Fig. 9, for
0 < 3_< 15, A modified address 3' is produced as a combinational func-
tion of the initial address a and a stored index l. The scheme operates
by scanning the bits of a and j from the most significant bits downward,
and testing a and j in the first place in which they differ. Three

intermediate functions are generated:

true when a for all k

=2 k = ko

~
o
Il

[}

S

(a > j): true when, for any k: aka(am = Jm) for all m > k) =1

(a2 j): true when (a = j) + (a2 = j) = 1.

15

=

\J

WV

e e ‘\l\
Y

¢

1 ! ! ! il]
o)
DECODER
ADDRESS

P

®

FiG. 8

SELECTION LOGIC FOR A REDUNDANT CROSSBAR

16

®

TA-5580-200

3 I3 9, iy 9, i) 94 lo
L] q @) 4 y [l'
a=j
ﬁ/ Y Y \T/ |
OR a>] \P azj
o e e
| b—-e ‘ -
| a | CI| OI
9% 2 | 0
NOTATION
Xy Xy Xy Xy Xy
® Y
x®@y (x@yY Xy Xy x+y
TA-5580-207
FIG. 9 NETWORK FOR ADDRESS MODIFICATION

The final result 3' is produced by a set of half-adders, which

adds 2O to a when (a 2 j) is true.

The delay through the network is 2N levels for N bits. This
could be reduced substantially (e.g., to about 5) by acceleration of the

“carry" signals in the two AND cascades.

An alternative scheme may be constructed in which (i = i) is
generated as the overflow of the carry chain logic of a parallel sub-
tractor, but the delay for such a scheme is at least twice that of the

design given here.

E. Switch Partitioning and Distribution of Contact

1. The Problem

The data-connection switch for a spaceborne multiprocessor will
probably need to transfer data with a parallelism of from ten to 30 bits,
Thus a practical crossbar switch will be composed of a set of crossbars
of the type described in the preceding sections, one for each bit of the
parallel data message. From the viewpoint of controlling errors in the
data—;witching contacts of these crossbars, the greatest number of such
errors could be accommodated when each crossbar may be controlled inde-
pendently of the others. Such replication of control, however, intro-

duces a degradation of reliability due to the added equipment.

In this section, we examine the problem of partitioning a
parallelédata crossbar system into indeﬁendently controlled data switches,
for optimum reliability. Our treatment should be considered as an intro-
duction to the problem, since we ignore the important question of
packaging (pin limitations, connector unreliability, etc.), and the

possible use of redundancy within the control circuits.

We do, however, distinguish two important cases of error dis-
tribution among the data switches: (1) multiple errors independently
located, and (2) multiple errors tending to occur in the same data switch.
These cases correspond, respectively, to discrete-component and integrated
logic component realizations. 1In the first case, protection is most

efficiently achieved by applying redundancy within each data switch; in

18

the second, redundancy is best applied in the form of spare, whole data
switch networks. 1In practice, some combination of the two redundancy
schemes would be likely, depending on the expected probabilities of in-

dependent. and dependent faults.

The two extreme cases will be considered in the next two

subsections.

2. Analysis of a System Suitable for Independent Contact Faults

We assume a data-switching system with the following parameters:

w parallel bits per word, each bit switched
by a separate, identical data-switching

network

m identical control modules, each con-
trolling the setting of a group of k data-
switching networks (all switches in a group
have the same contact settings), thus

w = mk,
The following failure probabilities are assumed:

a, = probability of failure of a control

unit

q = probability of a faulty contact in
a switching net, assumed << 1, with
multiple faults assumed to be

independent.

The system is illustrated in Fig. 10, ‘The dimensions of the
switches are not explicit, although, of course, they affect a indirectly.
It is clear that the system can accommodate the condition of at least m
switching networks with a single fault each, As it stands, the system
cannot handle more than one fault in any one network. This point will

be discussed further in the conclusion.

Although some double-fault conditions will not cause the failure

of a group, we assume that the overwhelming number of possible combined

19

CONTROL GROUP | eee GROUP M

l l l

DATA BIT | oo BIT K BIT W-K+1|eee] BITW

FIG. 10 PARTITIONED SWITCHING SYSTEM FOR CORRECTION
OF INDEPENDENT FAULTS

TA-5580-210

faults will do so. Further, since we assume dg << 1, the probability
of more than three faults may be taken as negligible compared to the

probability of two. This argument enables us to take the probability
of group failure as the probability of exactly two faults. By virtue
of our assumption on the independence of faults, there are k2 possible

distributions of two faults in the group.
It follows that

2
P. = probability of group failure = k q

1 s

due to switch-net faults.
Considering the failures due to the control unit for each
group,

P2 = probability of successful

2
group = (1 - k qS)(l - qc).

For the system,

P3 = probability of a successful system = Pg
2 m m 2
=(1 -kKg) (Ll -g) =1 -mkg)d(l -mg)
s c 5 S c
2 w
~ 1 - mk qs - ch ~1 -m ;5 qS - ch

Q

1,2
1—;n-(qu)-ch-

20

Treating m as a continuous variable, and differentiating P3

with respect to m, the optimum number of groups is found to be

1/2

with corresponding system reliability

P3 =1 ~ 2w~-\/qsqC

3. An Approach to the Accommodation of Nonindependent

Array Faults

If the dominant failure mode is the failure of an entire
array, (e.g., due to the breaking of a monolithic logic chip containing
several or all the elements of a switch network), the use of redundancy
within an array will not be effective. A more effective approach is

the use of spare networks, as in bit-slicing organization.

Such an approach, for a W-bit system, is illustrated in Fig.
11. One spare network is provided. Each channel is converted to a
swi%ching network via a 2 X 2 créssbar, i.e., a 2~permuter, as used
(ubiquitously) in our designs of commutation switches. The 2-permuters
are connected so as to permit the displacement of a signal to the right-
ad jacent network. 1In Fig. 11, the settings are shown for the bypassing

of network 2.

One bit of control information is sufficient for the set of
2-permuters serving one network. Control for the setting of the data
switches may be common for the entire array, unless it is desired to
accommodate some independent faults, in which case the scheme of the

preceding subsection may be superimposed.

It should be noted that the present scheme requires at least

three levels of switching.

*
In practice, m must be an integer in the range 1 to w,

21

[
BIT W+|

BITI BIT2 | - | BITW

R e A N

TA-5580-208

FIG. 11 SWITCHING SYSTEM FOR WHOLE-NETWORK BYPASSING

Multiple array faults may be accommodated by a straightforward
extension of the scheme. The additional hardware is not costly, but
each additional level of fault protection adds two levels of system

delay.
4, Discussion

Schemes have been presented for accommodating faults in data-
switching networks, for the cases in which faults are independently dis-

tributed among the contacts, or where faults are coherently distributed.

The schemes have not depended on any internal property of the
network, so the redundancy schemes of Secs. I-B and I-C may be applied

within these schemes.

An important omission in our partitioning schemes has been the
consideration of packaging reliability and packaging constraints such as

number of pins and number of circuits.

22

F. Summary and Conclusions

We have developed schemes for the control of errors in crossbar-
type data commutation networks. These schemes are reasonably economical
in both the data-switching logic and the control logic. Schemes were
developed both for the case of independent crosspoint faults, and for the
case in which such faults may be correlated, e.g., as when several cross-

points are combined in a single semiconductor device.

The general motivations for using crossbars, as opposed to networks
based. on permutation operations, are that the former insert fewer levels
of delay and have simpler control logic, at the price of a higher com-
ponent cost. The designs developed here do increase delay and compli-
cate the control. A final evaluation would require comparison of several
complete designs, for various assumed fault types. Such comparison would

have to include the important factors of packaging and interconnections.

23

II CRITERIA FOR THE SELECTION OF AN INSTRUCTION SET
*
FOR A SPACEBORNE COMPUTER

A, Introduction

It is the thesis of this chapter that the instruction repertoire
of a computer is intimately related to the reliability and effectiveness
of a computer system. In this chapter we explore several fundamental
computer processes and their implementation in different repertoires.
In general, the push-down stack instruction repertoire and machine
organization appears to be the best suited to spaceborne computers be-
cause of its highly efficient use of program memory, with relatively
little hardware complexity. Increased memory utilization is possible
with more complex instruction repertoires, but the repertoires add to
machine complexity and therefore might negate gains in reliability,
memory utilization, weight, and power consumption that can be attributed

to the increased effectiveness of the instruction repertoires.

B. . Basic Assumptions and Guidelines

The spaceborne computer environment is significantly different from
the environment of land-based computer systems. In spacecraft, the
precious resources are weight, volume, and power, whereas the usual
precious_fesource for land-based computers, time, is not nearly so dear
on spacecraft. The difficulty or impossibility of maintenance together
with the high cost of failure places special importance on high relia-
bility, which is seldom the case for ground comﬁuters. In considering
the constraints of the spaceborne environment, it is not surprising that
spaceborne computers should be designed and programmed differently from

their ground-based counterparts.

As we explore the alternatives that exist for the design of a

spaceborne computer, we shall assume the following:

x
By H. S. Stone,

25

(1) Special hardware that contributes mainly to the re-
liability of the computer system might be practical
for spaceborne computers while similar hardware

cannot be justified for ground-based computers.

(2) Trade-offs can be made between processing speed
and system reliability. It is appropriate to

identify these trade-offs.

(3) After launch, the collection of programs in a
spaceborne computer remains relatively constant.
The volume of data within the system may fluctuate

considerably.

(4) The computer system is a modular system, possibly
containing multiple processors and multiple memory
modules. Some or all items held in computer
memory are stored redundantly so that they can

still be retrieved in the event of memory failure.

(5) Instruction streams might be multiprogrammed in a
single processor, and independent instruction
streams might be executed simultaneously in the

multiple processors.

(6) A bulk storage medium is available for spacecraft
use that is suitable for storage of large files
of data but is not suitable as a storage medium

for programs that are undergoing execution.

The reason for the capabilities allowed in the last three assump-
tions is that we specifically do not want to make decisions that rule
out these capabilities. It may be the case, on the other hand, that
the assumed capabilities are not used. For example, a multiprocessor
computer might actually be operated as a simplex processor with the
unused processors idling in a low-power-drain state or performing re-

dundant computation for error detection,.

26

In essence, assumptions 4, 5, and 6 force us to consider certain

aspects of the computer system that otherwise may be overlooked.

The‘next section describes the attributes of instruction repertoires

that are pertinent to the design of spaceborne computers.

C. Instruction Repertoires

Two aspects of instruction repertoires concern us here, reliability
and efficient use of memory. The importance of reliability in spaceborne
computers is clear from the assumptions in the previous section. The
importance of the efficient use of memory is due to the fact that memory
size is highly correlated to the cost, volume, weight, power consumption,
and reliability of a spaceborne computer system. It is by far the most
precious resource in the computer system. Thus the efficient use of
memory contributes substantially to the overall effectiveness of the

computer system.

In the discussions that follow we will illustrate how the instruc-
tion repertoire has a very strong influence on memory utilization and
system reliability, and we will attempt to derive a skeleton instruction

repertoire that reflects “good" characteristics.

In most first- and second-generation computers, the instruction
repertoires follow a rigid format. Each instruction occupies a half or
the whole of one computer word and contains an operation code, tag bits
to control effective addressing, and one or more operand addresses. 1In
such rigid formats, as the number of addressable memory locations in-
creases, then so must the size of the operand address fields. The larger
address field inh turn dictates that the word size be larger so that the
number of bits in memory tend to increase as N log2 N, where N is the
number of memory locations. While the factor of 1og2 N is not serious
for small memories, it contributes to cost and degradation of reliability
of larger computers. In fact, the increase in address field size is
unnecessary. Programs characteristically do not address locations uni-~
formly through memory so that there is a potential savings in memory if

the most frequently used addresses are encoded with fewer bits than the

27

less frequently referenced locations. For those programs whose behavior
is independent of the total size of memory, the size of the operand
address field should also be independent of the total size of memory.
Consequently, it is possible in practice to eliminate the 1og2 N factor

in the growth rate of the number of bits in memory.

Apart from the addressing problem there are two distinct problems
concerning the instruction repertoire and its relation to efficient
memory utilization. The first problem is to find an encoding of a given
set of instructions so that storage is used with high efficiency, yet
the hardware required to implement the instructions is reasonably simple.
The second problem is to select the instructions for a repertoire under
the condition that there is a constraint on the total number of different
instructions allowed. A measure of the utility of the instruction set

is the compactness of programs for common computer processes.

The problem of encoding a specific instruction set can be solved in
theory by measuring the frequency of use of various instructions and
employing a Huffman code® scheme for encoding them with respect to the
frequency distribution. Since the Huffman code yields code words of
varying lengths, the problem of decoding Huffman-coded instruction
places an undue burden on the computer control unit. Compromise schemes
have been implemented in several computers. These schemes entail the
use of several different instruction formats of varying length, but the
lengths are carefully chosen to be mulfiples of an accommodated field
length. 1In the instruction sets described in succeeding sections, it
is assumed that multiple instruction formats of different lengths will

be utilized when conditions permit.

In the following sections we investigate the problems of addressing

and the selection of instructions for a repertoire.

D. Utilization of Address Fields

We assume that the address field in an instruction has a fixed
length. There are several different ways that the address field can be

interpreted by a processor to form an effective address. The various

28

alternatives can be used individually or in combination in a computer
system. It is our purpose to examine these alternatives and identify

those that lead to the greatest storage economy.

Among the alternatives available for the interpretation of address

fields are the following:

Method a--Use the entire field as an absolute

memory address.

Method b--Use selected bits in the field to
select one or more index registers
whose contents are added to the
field. The registers can hold
longer addresses than the address

field in the instruction.

Method c—--Use a bit to specify indirection.
The indirect address field can be
longer than the direct address

field.

Method d--Treat the address field as if it
specified a contiguous region of
memory, but use subfields of the
address as page and segment numbers

to permit memory remapping.

Method e--Use a subfield to specify addressing
relative to one register of a group
of registers whose state detérmines
the context of the program. The
address fields in the registers can
be longer than the address field in

the instruction.

Methods a, b, and ¢ are commonly used in present computers. Method
d is the well-known "paging' technique and may be used independently of

a, b, and ¢. An example of Method e is the Dijkstra display register

29

technique for addressing variables in ALGOL.® It has been implemented
in hardware in the Burroughs' B-6500.* Methods b and e are related but
are, nevertheless, distinct methods. The distinction lies primarily in
the mechanism for loading the registers. We shall adopt the point of
view that index registers are loaded and unloaded by issuing instructions
specifically for that purpose. Context registers, on the other hand, are

assumed to be modified as the side effect of instructions that cause

context to be changed,

Note that when total memory size is small, absolute addresses work
satisfactorily for addressing purposes. The interesting case is that in
which memory is sufficiently large that it is desirable not to waste
space by using absolute addresses in the instructions themselves. 1In

the next section we examine Methods ¢ and e more closely.

E. Addressing with Context Registers—-Stack Instruction Sets

Three of the methods for utilizing address fields are concerned
with addressing with the aid of machine registers. 1In this section we
see that one of the three methods, Method e, can be implemented in a
fashion that leads to very high memory efficiency. The form of imple-
mentation is known as the "stack" instruction set because the instruc-

tions perform operations on a push-down stack.

When registers are used to extend addressability (Methods b, d, and

e), storage economy of addresses is achieved only if the contents of the

2
registers can be modified to permit prdgrams to operate in different
address spaces. Two modes of operation are possible. 1In one mode, each
program in a system of programs may operate in its own address space so
that address registers need only be changed when control is passed from
program to program. Within the context of any one program, the contents
of the registers'are fixed., The second mode of operation permits pro-
grams to operate in an address space that is larger than that immediately
available in a fixed address field. In this mode, programs must modify

the contents of the address registers in order to change the area of

memory that is accessible to the program.

30

Regardless of the mode of operation, the use of registers to extend
addressability has an interesting consequence on the computer system. It
is essential that there be some mechanism for saving the contents of
registers and for loading the registers with new dafa in order to permit
programs to change to a new context or restore a prior context. In
general, this requires memory for use as register save areas* and to
hold the instructions necessary to store and reload the registers. This
is a nontrivial amount of sforage. (Programs written for the IBM 360
computer system following normal conventions require about 100 bytes per
subroutine to perform the register saving and reloading operations.) It
has been found that the memory used for the register save area storage
and register manipulation can be greatly reduced by using a stack in-.
struction set; hence this approach is very significant to our concern

for efficient use of memory.

The stack instruction approach utilizes registers as described in
Method e. 1In practice, all addresses in instructions would be paired
with a tag field that specifies which register is to be added to the
addréss to form an absoluté memory address. We shall call the registers
"context registers,’ for they defermine the context of a program. A

minimum of four registers are needed and these are:
(1) Program counter

(2) Global data area-—-the address of a data area that

all subprograms share
(3) Current top of stack

(4) Local data area-~the address of a data area that is

"private" to the subroutine currently in execution.

We shall first discuss the operation of the stack instruction set with
respect to the four registers designated above; then we shall consider

some variations of the scheme,

k
For convenience, we will refer to such areas of memory as "save areas."

31

A change of context within a program 15 normally viewed as an entry
to a subroutine in the program. Each entry to a subroutine requires that
some of the context registers be saved, initialized for the subroutine,
and eventually restored prior to exit from the subroutine. For the
scheme empioying four context registers, all but the global data register
must be saved. The global data register would be saved when an entirely
different program is entered, e.g., when an interrupt is recognized and

an interrupt program is entered.

Instead of allocating sufficient memory for saving the registers in
each subroutine, the memory for save areas can be allocated dynamically
by saving the registers in a push-down stack. The "call subroutine"
instruction should operate by placing the three context registers at the
top of a push-down stack, and the "return from subroutine' instruction
should perform the inverse operation. In this way, no special instruc-
tions need be stored and issued to cause the registers to be saved and
restored. Moreover, the memory requirements are determined dynamically
so that the amount of memory used for register saving depends on the

maximum that is actually needed.

‘The advantages of the stack instruction repertoire can easily be
extended to the problem of passing parameters from routine to routine.
Parameters have the characteristics of the context registers. 1In order
to pass parameters from one subroutine to another, the parameters must
be moved into a parameter area, and this entails the use of memory for
parameter areas and for instruction sequences that move parameters to
the parameter areas. 1In a stack machine, the stack serves well as a
parameter area. The maximum space allocated for parameters is determined
by the true maximum program requirements since the memory for parameters
is allocated dynamically. When a subroutine is exited, the space used
for parameters to that routine becomes available automatically when the
stack is "popped"” during the exit. A minimum amount of memory is needed
for instructions to move the parameters to a communication region because
it is necessary to issue only ''push-down" instructions. The '"push-down"

instruction is effectively equivalent to a pair of instructions, "load"

32

1"

and "store," that would be required in a conventional organization in

this case,

One last point concerning memory allocation is worth mentioning.
Local memory can be allocated in part in the push-down stack, thereby
effecting an economy in the use of memory through automatic dynamic
allocation., Variables that are local to subroutines that must retain
their identity after the routine is exited cannot be stored in the stack.
They must be allocated in fhe global data area. The stack is appropriate
only for the storage of local variables that are reinitialized at each

entry of a subroutine,

Increased program reliability can be achieved through the use of
reentrant programs, and the stack mechanism is completely compatible
with this concept. Return addresses, for example, are stored in the
stack as we have described the situation, and thus are not stored in
program areas as is the case for some computers. When return addresses
are stored in program areas, the self-modification of the program pre-

vents reentrant use of the program,.

In some situations a single global data register is undesirable.
For example, the implementation of ALGOL 60 using a Dijkstra display
requires the use of many registers to define the context of data. Addi-
tional registers can be added to a computer and still retain the character
of the stack instruction set, However, additional registers require more
bits in the address field to select one register from the set that defines
a context. The B-5500, a stack machine, uses only one global data
register and illustrates that the use of one register is not a serious
limitation. Its successor, the B-6500, uses 32 registers to define a

context within its stack organization.

We have mentioned that the program counter can be used to define a
context within a program area, It can be used to reference constants
within programs and to reference the target instructions of branches.
When the program counter is used, references must generally be indicated
as increments or decrements relative to the contents of the program

counter. Both types of references occur because branches may be forward

33

or backward. Since the first instructions of a program branch mainly

in the forward direction, and the last instructions in a program branch
mainly in the backward direction, only half of the potential addressa-
bility relative to the program counter is used at the beginning and end
of a program. This points out that one can save one bit in program-
relative addresses by using a program base register instead of the
program counter to determine the context of items in the program area,
Addressing relative to the program base register uses positive increments

only.

To summarize the points in this section, we have shown that the
stack instruction set yields very efficient memory utilization for the

following reasons:

(1) Contexts are changed with a minimum of machine

instructions.
(2) Register save areas are allocated dynamically.
(3) Parameter areas are allocated dynamically.

(4) Parameters can be moved to parameter areas with a

minimum of instructions.

(5) Return addresses are stored in data areas rather
than in program areas, thereby facilitating the

execution of reentrant programs.

The points above strongly support the implementation of stack in-
structions in a spaceborne computer. We note that while it is possible
to simulate a stack with both Methods b and c, the loss of efficiency in
performing the stack operations in software negates much of the poten-

tial gains in utilizing a stack.

F. Extension of Addressability with Indirection

Indirect addressing (Method c¢) has been used in some computers to
obtain increased addressability. The technique used is simply this.
An address field of an instruction is used to access a storage location

that contains the true memory address of an operand. Addressability is

34

enhanced when the instruction address field is smaller than the address
field used in the indirect address. Indirect addressing is compatible
with the stack instruction repertoire described previously, so it can be

used in combination with context registers.

There are important aspects of indirection which bear discussion,
beyond the éimple explanation given above., 1In particular, there are two
different ways that indirection can be controlled. The most usual way
is for the indirection to be specified by the program. A less frequently
used mechanism is to specify indirection in the data itself. We shall

examine these techniques in the remainder of this section.

In most implementations the instruction determines if the operation
is to be executed in the direct mode or in the indirect mode. If the
mode is indirect, then the contents of the reference address are in-
spected, to determine if it specifies another level of indirection. It
is not necessary to support multiple-level indirection if one can achieve
economy or reliability by supporting only a single level in hardware,.

One level of indirection is sufficient to achieve most of the potential

economy that indirection offers.

Data-specified indirection works somewhat differently. 1In this
mode of operation, the instruction itself does not specify whether the
operation is direct or indirect., Instead it specifies a reference
address that contains either the operand or the address of the operand
to be used for the instruction. The reference address must be inspected
in order to determine if the operation is direct or indirect, This mode
of operation requires that data and indirect addresses must be dis-
tinguishable. For example, a single bit per word might be allocated to
identify whether the other bits in the word are to be interpreted as an

address or as a datum,

There are two points of comparison of the two techniques for im~
plementing indirection. First we shall compare the two with respect to

their utility. Then we shall consider the relative storage efficiency.

35

From the point of view of utility, data-controlled indirection can
be used to perform all operations that can be performed by program-
cohtrolled indirection, using precisely the same number of instructions,
but the converse is not true. 1In fact, data-controlled indirection can
lead to efficiency that is not available if indirection is only under

program control.

To support that claim, note that it is quite straightforward to
convert a program that utilizes program-controlled indirection into an
equivalent program of the same length that utilizes data-controlled in-
direction. On the other hand, if indirection is data-controlled, then
the activity of subroutines can be controlled to greater extent at the
time the subroutine is invoked. In fact, the crucial aspect of call-by-
name or call-by-value can be controlled exclusively through data-
controlled indirection. Thus, it is possible to achieve more general
use of subroutines if data-controlled indirection is available since
the question of direct vs. indirect operation for the instructions is
not built into the subroutine but is resolved when the subroutine is

invoked.

‘Now let us examine the question of relative efficiency of the two

methods for specifying indirection.

If indirection is program specified, then it is necessary to extend
the instruction field sufficiently to include the capability of specifying
indirection. In most implementations this amounts to one bit per in-
struction. We mentioned earlier that data-controlled indirection can be
implemented by using one bit per datum. 1In essence, the specification
bit can be placed either in the instruction or in the data. The most
efficient allocation of the indirect bit depends on the relative size
of data and program, and on the potential savings in memory space that

can be attributed to data-controlled indirection,

No recommendation is included here because the choice depends on
characteristics of program and data that are not known at present. The

important point is to recognize that a choice exists and that certain

36

advantages accrue to data-specified indirection that have been ignored

in most computer implementations.

G. Address Arithmetic

Instruction repertoires have often included instructions for per~
forming higher-level processes. For example, it is usual to include an
instruction that both increments an index and does a conditional branch.
Address arithmetic operatigns is another class of higher-level process
that is represented extensively in some instruction repertoires where
this representation is primarily through the use of index register fields
that control the calculation of effective addresses. In this section we
examine address arithmetic associated with one- and two-dimensional
arrays. The analysis shows that there is considerable improvement
possible in the way address arithmetic operations are specified in a

computer.

Address operations for one-dimensional arrays geherally assume the
following rigid format. Given the base address of an array, an index
to the array, and a lower bound on the indices represented in storage,

the address of the ith element of the array is computed as follows:

address of ith element = base address + index ~ lower bound

For two-dimensional arrays, two different generalizations have been
adopted in practice. The first, polynomial addressing, requires knowledge
of the upper bound of one dimension of the array as well as both lower
bounds. Given an N X M array with lower bounds equal to one in both
dimensions, the array elements can be arranged in storage in the order
(1,1, (1,2, ..., ,m, (2,1, 2,2), ..., (2,M, ..., (N,M). Then

the address of element (i,Jj) can be calculated as follows:

address of (i,j) = base + (i - 1) XM + (j - 1)

This is called row major order. The elements can also be stored in

column major order; i.e., the order is computed by varying the column

37

index more slowly than the row index., This leads to a polynomial of the

form
address of (i,j) = base + (j - 1) X N + (i - 1)

If the lower bounds can be arbitrary, then the formulas take the
following general form:

address of (i,j) = base + (El) X Ly, + E,

where E1 and E2 are effective indices and L2 is a length. 1In general,

for any dimension,

E = index -~ lower bound
and

L = upper bound -~ lower bound + 1

The second method of addressing two-dimensional arrays utilizes
indirection., For this form we obtain the address of element (i,Jj) by

computing
address of (i,j) = [base address + i - 1] + j - 1

where the brackets mean 'the contents of' and we assume that lower bounds
are equal to 1 in both dimensions. For arbitrary lower bounds the

formula generalizes to
address of (i,J) = [base + El] + E2

where E1 and EZ are effective indices as before. Notice that the upper

bound does not appear in this formula.

Calculation of addresses using the method of indirection requires

that the contents of the memory locations starting at the base address

38

of the array contain addresses of the base addresses of the rows of the
array. In general, if there are L rows in an array, then L memory loca-
tions must be used to hold addresses. Hence, there is storage penalty'
if indirection is used. This is balanced by the time penalty associated
with the polynomial calculation method due to the necessity to fetch the

value of the length and to perform a multiplication.
For multidimensional arrays the two methods generalize as follows:

Polynomial:

o . X _ "
address of (11’12""’1k> base + (...(El) L, + Ez) X Ly ...) L+ Ek)

Indirection:

]

address of (11’12""’ik) [[...[base + El] + Ez] e+ Ek-l] + Ek

For spaceborne applications the polynomial method of addressing is
attractive becuase it does not require the additional memory for holding
addresses that is characteristic_of the indirect method of addressing.
Howéver, it is also desirable that the instruction repertoire assist the
calculation of address polynomials so that we achieve additional storage

savings by reducing the length of instruction sequences.

To see how this can be accomplished, note that we must have access
to both the base address of an array and to the length of the first
dimension of that array when we compute indices to a two-dimensional
array. By convention, let us organize the array so that the length of
the first dimension is stored immediately below the (1,1) element of
the array. Then the base address of the array can be computed from the
address of the length of the first dimension. This observation leads
to a material generalization in which the data and the instruction set

take the form described as follows.

Assume that we are dealing with a k-dimensional array. The data
are organized so that the first 2k locations of the storage area contain

the lower bounds and lengths of the k dimensions in order, and the

39

following locations contain the data in the array arranged in the k-
dimensional generalization of row major order. (The first index varies
slowest, and the last index varies fastest.) The base address of the

array points to the first lower bound.

We assume that there exists an INDEX instruction in the repertoire
that has the following behavior. One register is assumed to hold a base
address, a second registervholds a partially computed index, a third
register holds the length of the current dimension, and a fourth register
holds the value of the index of the "current" dimension where the lower
bound has not yet been subtracted from the index., When the INDEX in-

struction is issued the following events occur:

(1) The base address is interpreted as the address of
the lower bound of the current dimension., That

lower bound is fetched into a temporary register.

(2) The lower bound is subtracted from the current

index to create an effective index.

(3) The effective index is examined. A negative index

indicates an error has been made.

(4) The base address is incremented by 1. (The base
address now points to the length of the current

dimension.)

(5) The length of the current dimension is fetched

and placed in the length register.

(6) The effective index is compared to the length.

If it is greater, then an error has been made.

(7) The partial index is multiplied by the length,

and the result replaces the partial index.

(8) The effective index is added to the partial index

to create a new partial index.

(9) The base address is incremented by 1.

40

Although the instruction sequence appears complex, it merely performs

the operation
(...) XL, +E,
i i

in the address polynomial calculation, including bounds checking. The
partially computed index must be initialized to 0. This can be done in
one instruction if we assume that there exists a special instruction
LOAD BASE REGISTER which also performs initialization. To obtain the
address or the value of an array element after indexing, we need the
instructions LOAD INDEXED ADDRESS or LOAD INDEXED VALUE that add the

base address to the partial index at the end of an address computation.

Multiple precision and packed arrays fall into this general scheme
of operation, To index into arrays such that one array element occupies
p words (p may be an integer or a rational fraction), we must multiply
the partial index by p just prior to the addition of the partial index
to the base address. This can be done either by issuing an instruction
to perform the multiplication or by incorporating the operation into the
LOAD INDEXED ADDRESS or LOAD INDEX VALUE instructions. In the latter
case, the parameter p would be stored immediately following the upper

and lower bounds.

Using the instructions above we have the following examples., To

compute the value of A[i], we issue
LOAD BASE ADDRESS A
INDEX i
LOAD INDEXED VALUE

To compute the address of BI[i,j], we issue

LOAD BASE ADDRESS B
INDEX i
INDEX J

LOAD INDEXED ADDRESS

41

Although we have not stated how the registers associated with the
INDEX instruction are organized, there is some advantage in using a push-
down stack to avoid the problems of register allocation and saving-
reloading. The push-down stack organization allows the efficient compu-

tation of expressions such as the following:
A[BI[i, jl1, Clk]]

where the stack is used for temporary storage of the registers used by

the INDEX instruction,

The instructions introduced here are designed to facilitate commonly
executed program process. Although they are complex, they are adaptable
to a general form of array storage. Moreover, the data are organized to
facilitate automatic bounds checking so that increased reliability is
obtained without a corresponding increase in the number of program in-
structions. The instructions can be made simpler in this instance if
we assume that all lower bounds are O. This saves the subtraction of
the lower bound and it also saves the storage location allocated to the

lower bound.

More generally speaking, the analysis carried out in this section
might fruitfully be applied to other common processes to arrive at in-
structions that assist processing in similar ways. Other processes of
particular interest are operations on data structures such as stacks,

queues, trees, and packed-data structures,

H. Summary and Conclusions

This chapter has concentrated on three particular aspects of in-

struction repertoires--address specification, indirection, and indexing.

§

With respect to address specification, the context registers of a
stack-organized instruction set offer a potentially significant savings
in memory utilization. For this reason a strong case can be built for
adopting this mechanism in an instruction repertoire instead of more

popular alternatives.

42

The questions of indirection and address calculations are still
unsettled., The points raised here indicate that there exist alterna-
‘tives thét have often been neglected in the usual implementation but
which are potentially useful in spaceborne applications. The discussion
hgs also indicated the direction that further exploration might take in

order to resolve the outstanding questions,

43

Appendix A

FAULT PROTECTION FOR PERMUTATION NETWORKS

The paper "A Permutation Network'® describes a switching network
comprised of N log N - N + 1 cells where each cell can be looked at as
a 2 X 2 crossbar switch, thus making a total contact count of

4(N log N - N + 1),

' Now in Fig. 2 of the above paper if PA and PB are fault-tolerant
networks and an additional 2 X 2 switch is added at inputs vy and V,,
we can consider the whole network fault tolerant since the assignment
algorithm in page 6 can be followed starting with the inputs to a faulty
peripheral 2 X 2 switch. The total modification of a switching network
on 2 log N - 1 levels will consist of

4(20 + 21 + 22 + ... 2(1og N—l))

additional contacts and one additional level. The added level is due to

the duplication of the center level for fault-tolerance consideration,

so that for N = 2k

4(20 Lol 2%, 2k'1) =4(2k - 1) - 4N - 1)

we have

c(N,2 log N) = 4N log N

45

REFERENCES

J. Goldberg et al,, "Techniques for the Realization of Ultrareliable
Spaceborne Computers," Interim Scientific Report 3, Contract NAS
12-33, SRI Project 5580, Stanford Research Institute, Menlo Park,
California (June 1968) ,

D. A. Huffman, "A Method for the Construction of Minimum Redundancy
Codes," Proc., IRE, Vol. 40, No. 10, pp. 1098-1101 (October 1952) .
B. Randell and L. J. Russell, Algol 60 Implementation (Academic
Press, London and New York, 1964).

E. A. Hauck, B. A, Dent, "Burroughs' B6500/B7500 Stack Mechanism,"
AFIPS Conf., Proc,, SJCC, pp. 245-251 (Thompson Book Co., Washington,
D.C., 1968).

A. Waksman, "A Permutation Network,” J. ACM, Vol. 15, No. 1, pp.
159-~163 (January 1968) .,

47

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)
1. ORIGINATING ACTIVITY (Corporate author) 28. REPORT SECURITY CLASSIFICATION
Stanford Research Institute Unclassified
333 Ravenswood Avenue 2b. GROUP
Menlo Park, California 94025 N/A

3. REPORT TITLE

TECHNIQUES FOR THE REALIZATION OF ULTRARELIABLE SPACEBORNE COMPUTERS

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
Interim Scientific Report 4

5. AUTHORIS) (First name, middle initial, last name)

Jacob Goldberg Harold S. Stone Abraham Waksman

6. REPORT DATE 7a8. TOTAL NO. OF PAGES 7b. NO. OF REFS
December 1968 62 5
8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBERI(S}
NAS12-33 Interim Scientific Report 4
b. PROJECT NO-. SRI Project 5580
<, 9b. OTHER REPORT NO{S) (Any other numbers that may be assigned
this report)
d.

10. DISTRIBUTION STATEMENT

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

' NASA
Electronics Research Center
Cambridge, Massachusetts 02139

13. ABSTRACT

This is the fourth scientific report of a study dedicated to the development of tech~
niques for the realization of ultrareliable, high-performance, spaceborne computers.
The techniques developed are in support of computer structures in which reliability
is achieved through autonomously controlled logical reconfiguration and fault masking.
The report presents techniques for the accommodation of faults in data commutation
networks based upon crossbar-type switching arrays. Schemes are developed for
accommodating switching failures and for embedding logic for the control of alterna-
tive switching setups within the network. Several schemes are developed that are
appropriate for random and for correlated fault types. The second topic is a con-
sideration of criteria for the selection of an instruction set for a spaceborne com-
puter. Several merits are found for the use of stack-organized instructioms,
together with special registers for specifying the context of a process. Possible
advantages of indirect addres51ng are also discussed.

-
FORM
DD 1 NOV 591473 (PAGE 1) UNCLASSIFIED
S/N 0101.807.6801 Security Classification

UNCLASSIFIED

Security Classification

KEY WORODSYS

LINK A

LINK B

LINK C

ROLE wT

ROLE wT

ROLE wWT

Data Switching Networks
Reliability

Logical Redundancy
Spaceborne Computers
Computer System Organization

Memory Addressing

DD fo™ 1473 (eack).

(PAGE 2)

UNCLASSIFIED

Security Classification

